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An elementary model of non-exponential decay: II. 
Applications to measurements in superconductors and in a 
spin glass 

P Erhart, B Senning and F Waldner 
Physics Institute, University of Ziirich, CH-8057 Ziiricb Switzerland 

Received 7 July 1993, in final form 19 January 1994 

Abstract. The ’elementary decay model‘ (wM). which allows an interpretation of most non- 
exponential decay functions, is applied to representative published decay curves measured in 
superconductors and in B metallic spin glass. Features atuibuted previously to different regimes 
mnnected by crossover regions can be interpreted by monotonically changing parameters. 

For high-T, superconductors I-V curves are also analysed with the adequately transformed 
WM. In addition, the excess conductivity in the paraconductive region above 7, is well modelled 
by an Arrhenius excitation, which also extends below T, in mulolayers of YBCO. Measurements 
previously interpreted by U e ~  a J‘* m also be interpreted by the EDM, which is close to 
Urw K -In J evaluated by Blatter and co-workers. The rapid drop in resistivity close to a 
hansition into a vortex-glass state measured in the pV range by Gammel and co-workers in 
YBCO could also be fitted by the WM. 

Funher, the ‘ageing’ or ‘memory’ effecl in a metallic spin glass is well interpreted by the 
W M .  In particular, the ‘memory’ effect is shown to be a consequence of ploning non-exponential 
decay d m  against the logarithm of a retarded time and is therefore not a unique indication for 
a spin glass. 

1. Introduction 

In the previous paper [I], an elementary decay model (EDM) was introduced that interpreted 
quantitatively most non-exponential normalized decay forms x ( t )  = X ( t ) / X o  as observed 
in, and proposed for, disordered structures such as spin glasses and granular superconductors. 

The EDM can be considered as generated by an initial distribution fo(E’) of occupied 
activation energies E’ = E / T  with their occupation decaying independently in time t by 
thermal activation with a rate ro exp(-E’), and with 1/b = E’ = E / T  denoting the average 
initial energy E normalized by the temperature T .  The ratio E / T  = l / b ( T )  determines the 
shape, with an exponential form for b --t CO, a form close to a power law for intermediate 
values of b(T) ,  and a nearly logarithmic decay for b(T)  << 1. Intermediate values of b(T)  
also describe the ‘crossover’ regions quantitatively. 

On the other hand, the EDM could be regarded as generated by an effective activation 
energy U&) which increases in time as a function of the decaying normalized observable 

The resulting functions of the EDM were compared in [I]  with existing predictions of 
microscopic models for decay in spin glasses and superconductors. 

The first decay data in a high-T, superconductor published by Muller and co-workers [2], 
who were also the first to propose a spin-glass-type behaviour, have already been fitted [3]. 

The present paper applies the EDM to selected experimental data in superconductors and 
in a metallic spin glass. 
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2. The 'elementary decay model' (EDM) 

Since the 'elementary decay model' (EDM) has already been introduced [l], only a brief 
description will be given here. 

The motivation was to search for an elementary common physical mechanism for the 
non-exponential decay observed in a large number of disparate phenomena. Probably 
the most elementary assumption is an initial Poissonian fo(E')  = (l/E')exp(-E'/,!?) 
distribution of activation energies E' = E / T ,  with normalized average energy E' = E / T  
and with each fraction decaying independently according to an Arrhenius rate r(E') = 
roewp(-E'). The resulting normalized form g(b, r )  = X( t ) /Xo  of the EDM for the above 
elementary initial condition could be evaluated in closed form 

g(b, r)  = bs-by(b, T) = bs-b l' sb-' e -' ds (1) 

with the normalized time r = rot and with the incomplete gamma function y(b, r )  as an 
important correction to the term T - ~  describing a power law. 

In an alternative interpretation, this decay form g(b, 5 )  could also be considered as 
generated by a b-dependent form of an effective barrier energy &(g) increasing as a 
function of the decaying normalized observable g. 

A very simple method to vary the shape of a non-exponential function consists in shifting 
the starting time from t = 0 to a new starting time t* = 0 by a fictive initial delay ti. where 
t = t' + tin, with the resulting function renormalized to one for f' = 0. This method 
has been used to generalize the EDM to describe variations of the short time behaviour by 
introducing a second parameter sin = rot," yielding a normalized two-parameter decay: 

A variation of the long time behaviour will be treated in section 3.1.4, where the extended 
exponential exp[-(t/ta)fl] (the Kohlrausch function) is approximated. 

3. Application of the EDM to experimental data 

3.1. Fitting decay measurements in superconductors 

3.1.1. Effective activation energy in high-T, superconductors. Maley and co-workers [4] 
obtained the dependence of the effective activation energy Uea as a function of the 
magnetization from magnetic relaxation studies in YBCO. Data points obtained similarly 
by van der Beek and co-workers [SI in a Bi&CaCuzOg+s sin le crystal are reproduced in 
figure 1 together with the fit with the corresponding curve for U,, ( x )  obtained from the EDM 
with b = 0.07. Note that the log-log plot yields a curved function. The interpretation [6,7] 
by a power law Uer a ( j ) - p ,  where .? = J / & .  is shown by broken curves for the exponents 
j~ = 9/8 predicted [SI for the thermal activation of small flux bundles in a weakly pinned 
3D vortex lattice, and j~ = l /2  for the activation of larger bundles 191. 

The experimental data indicate a rather continuous 'crossover' of the exponent !.L, similar 
to the result found in a Monte Carlo simulation [lo] of the Sherrington-Kirkpatrick model 
(see figure 8 of the previous paper). 

1 5 )  
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Figure 1. Points (from [SI): dependence OnCurrent density of lhe extracted effective barrier 
U ( j )  on a log-log plot. Curves: fits of U&(J) of the EDM with b = 0.08. 

3.1.2. Combining decay and I-V curves of a high-T, superconductor. Sandvold and 
Rossel [ l l ]  combined I-V characteristics and magnetic relaxation in YBCO films measured 
at 70K (T, = 88.5K). The analysis of the magnetic relaxation M ( t )  in a ring revealed an 
electric field E ( J )  as a function of the current density J ,  with E ten orders of magnitude 
lower than for the I-V measurements. Both types of measurements were performed at 
1 and 3 kG. The four resulting sets of measurements are well described by the same form 
ln(E) = A - B / ( D J ) c  as predicted by the collective pinning theory and in the vortex-glass 
model which assume U e ~  a J-"@ in the expression for the electric field E a exp(-UeH/T) 
in the regime of collective creep occurring below the irreversibility line. The authors used 
the same exponent C = l/or for all four sets, yielding (Y = 2.9 f 0.4. However, the 
fitting parameters A and B were different for the two magnetic field settings, and three 
different values for D were used. Hence the four sets were fitted with the eight parameters 
A I ,  As,  B1, B3, C, D1-v.1, D I - y . 3 ,  DM and thus with two adjustable parameters for each 
set. 

In the fiamework of the EDM each set of measurements can independently be fitted 
with two adjustable parameters Ai and Bj. Using the approximations E ( J )  = A;J5e+1 
for the I-V data and M ( t )  = Ajt-w for the magnetic relaxation, the resulting values for 
B, = &/T = l /b are around 28,22 for the I-V data and 34.29 for the M ( r )  data for 1 kG 
and 3 kG, respectively, thus decreasing for increasing magnetic and electric fields, with the 
same ratio as the authors' values U o / k T  c 70,55 for the I-V data. 

In contrast to Sandvold and Rossel, the interpretation by the EDM yields the above four 
independent values for the average energies B, = e i / T ,  without a common exponent, as 
in the glass model with the effective energy U,S/T a J-'. 

However, an arbitraq common exponent C could be constructed for Bj = F(Djs)-c.  
This is possible by setting DI = 1, which defines the common prefactor F. Then the 
remaining three scaling factors Di are determined. Such a calculation could obviously be 
performed for any set of four positive pairs (Bj, 3) and chosen non-zero value for an 
exponent C. 

Therefore, the uniqueness of the interpretation by U o( J-' with a common exponent C 
might be reconsidered if the fits of different sets imply that the measured current densities 
have to be scaled by different adjustable factors D,. The difference between the two 
interpretations would then be reduced to the question: is the small negative curvature in the 
log-log scale inside each data set relevant? In the I-V data the curvature occurs for the 
data below E = 10-5Vcm-' where the scatter of the data is increased, and for the M ( t )  
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data in the region close to the well pronounced systematic deviation of the magnetometer. 

3.1.3. Decay in an extreme rype-I1 superconductor. The decay functions observed by 
Svedlindh and co-workers [I21 in the extreme type-I1 superconductor PbMo& show a 
strong dependence on the applied magnetic field for small fields, but are nearly independent 
for high fields. As an example, see figure 5(b) of [12]; the authors fitted at a high field the 
decay of the thermoremanent magnetization M ( t )  = A[lnt/to]* yielding [Y = 1.25 i 0.1 
and loglo(to) = -9 f 1 at 13.5 K. Furthermore, the authors tried to fit a power law r-6, but 
they could not find a good description of the observed data. 

These data measured at 13.5K are used for a comparison of different quantitative 
descriptions. The resulting relative deviations are plotted in figure 2. 

0.99 C'' i 

l i  I 

0 2 4 
log,, t 

Figure 2. The decay of the thermoremanent mgnetiwtion M ( r )  in the extreme t y p l l  
superconductor PbMosSs observed at high fields ar 13.5K by Svedlindh and co-workers [I21 
is fitted with the following functions. For selected measured data LIZ] the ratio Mmr.ud/Mfi, 
(points) are displayed after fitting to (a.3). The other fits are represented by curves. (i) (e) 
A[lnt/lol-". (a.1) . . . .. . fit with the values of 1121 kept within their errors. (u.2) - . . - fit 
with a ,  ro and A as free panmeters, yielding a = 1.55 ?c 0.03, log,&o) = - I  1.7 1 0.3. and 
A = 1400 &ZOO. (a.3) - - -fit as (u.2). but with I replaced by I + I,,,, thus with I,, as an 
additional free parameter. yieldinga= 1.73f0.03, loglo(l~) = -13,310.3, A = 3 1 0 0 1 4 W .  
and I,, = (-0.03 1 0.05)s. (ii) (8) power law BIro(1 + tc,,)]-@. (8.1) - . - fi t  with lc0,, 
set to zero resulted in a large least-square deviation. see below. (8.2) . . . . fit with I,, as an 
additional free parameter. yielding B = 0.048 * 0.001, ro = (3.4 1 26)s-'. E = 9 f 3, and 
a correction of I,, = (-0.17 I 0 . 0 3 ) ~ .  (s) - Xog'2'[b. ro(1 t of the EDM. with b. 
'0. Xo and tsan as free parameters, yielding b = 0.0482 i 0.0002. '0 = (7.7193 f 0 . 0 0 0 4 ) ~ - ~ ,  
X o  = 9.33 i 0.02 and I,, = (-0.2016 f 0.00003)s. This correction time could also be 
considered as a fictive time delay ti. of the two-parameter function gv) describing a different 
initial condition. The I w t  square deviations x 2  of the sbove examples relative to ,y2(p) are 
(e) 5.2, 2.0, 1.7, (8 )  5.9. 1.1: 3nd (g) 1. 

Keeping in mind that fits are sensitive to the definition of the initial time t = 0 to be 
determined by the time when the field is switched off, the possibility of a small systematic 
deviation t,,, has been introduced by using t + #cor replacing their t .  

The functions tested are (a) A[lnr/ro]-', ( p )  power law B[r& + tCor)]-@, and (g) 

As demonstrated by the deviations in figure 2, a power law can only be excluded if the 
actual time of the drop of the magnetjc field is determined with high precjsion, Le, when 
a value of tcm around 0.2s is improbable. Furthermore, for a clear discrimination between 
((U) and (g) the scatter of the data is too large. 

Xog@)[b ,  r& 4- tm,)] Of the EDM. 

Note that only the EDM allows a determination of the initial value XO. 
Moreover, their zero field cooled (UC) magnetizations MZW measured at low magnetic 

fields are very peculiar. These data 1121 exhibit an extremum in the derivative dM/d(lnt) 
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with respect to the logarithm of the observation time t ,  see points in figure 3. The time when 
the extremum occurs increases for decreasing field. The authors [I21 relate this extremum 
to a physical fact, namely 'to the time when full flux penetration in the sample is achieved'. 
Certainly, such an extxemum might signal a special feature of the decay process. However, 
suppose a decay function X(t)  starts at a finite initial value Xo with a finite derivative 
-dX/dr with respect to time t and with -dX/dt decreasing to zero for f --t CO. This 
function will exhibit an extremum in their derivative -dX/d(ln t )  at a time tex,, governed 
by the shape of X ( t ) ,  with &.,, = 1 for X ( r )  a exp(-r) as an example, without the need 
for a change of the type of the decay at rsu. This is demonstrated by fitting the observed 
decay with the double-parameter function g("(b, E&&, r )  of equation (6) of [l] of the 
EDM, see curves in figure 3. The resulting initial distributions Xo fo(E') are displayed in the 
inset in figure 3. Note that the second describing parameter EA-pd is nearly independent 
of the applied field. 

6001, I 

F i y r e 3 .  Derivative dM/d(ln t) of the zero field cooled 
mametiration M with reswct to the lo-thm of time t 

Flgure 4. Points: relaxation of the remanent magne- 
tization measured in the heavy fermion superconductor 

~ - 
in the extreme type-D superconductor PbMosSs at small 
magnetic fields of 37. 39, 41 and 43 G, from Svedlindh 
and co-workers 1121. Curves: fits of the derivative 
Xndgal(b, E&+ r)/d(In r )  of the U)M with T =rot 
and the co-pondmg fit values Xo = 5.9.7.2.6.4.5.3; 
b = 0.05.0.05.0.06.0.09; E& = 3.34. 3.50, 3.44, 
3.36: ro = 0.002.0.013. 0.034. 0.040 s-'; respectively. 
Inset: initial distribution functions X n  fo(E') against 
reduced energy E' = E / T  of the EDM. 

Upts by Pollini and CO-workek 1131 at 209mK. Curve: 
calculated decay using the heuristic form f w ( E ' , r )  
a (E '+  l ) (~ - ' ) exp( -bE")expI - ( rg f  +c)exp(-E')] 
yielding b = 0.0001, o = 4.8. ro = 0.0026, e = 
-5.5. I w t :  distributions f W ( E ' . t )  for the times 
t l ) .  [IO'. IO', IO'. IO5. marked by mows]. IO6. Ex- 
cept for the very short times, the decay is also well 
fitted by the Kohlrausch function exp[-(t/to)fi] with 
@ = 0.55, to = 347 s. 

3.1.1. Decay in a heavy fermion superconductor. Another important example concerns the 
decay in the heavy fermion superconductor UPt3 as reported by Pollini and co-workers [13]. 
see points in figure 4. A smtched exponential exp[-(rot)o], the heuristic function of 
Kohlrausch, is an excellent description of the measured data, although there is at present 
no microscopic model that predicts the corresponding generating effective activation energy 
U:;)(X) ci (1 - @-')In[- 111x1. 

A description with a generating initial distribution according to (2)-(4) is not easy to 
find. The point is that, for a Kohlrausch behaviour, a Gaussian rather than a Poissonian 
distribution is adequate. Indeed, a heuristic modified Weibull initial distribution f z ( E ' )  

exp(-bE") 
exp[c exp(-E')] 

# ( E ' )  a (E' + 1 p - t )  (3) 
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turned out to describe well the observed behaviour (see the full curve in figure 4, evaluated 
by numerical integration of equations (2) and (3) of 111). The inset displays the distribution 
fW(E', t )  for increasing times. Note that this asymmetric distribution goes through a 
symmetric distribution around t = IO5, which is close to a Gaussian distribution. 

3.2. The temperature-dependent decay in high- T, superconductors 

3.2.1. Adopting a temperature dependence for .?? of the EDM. Since the temperature 
dependence of the mean energy E of b = T / E  is not part of this model and needs an 
understanding of the detailed physics involved, the form 

.t 1 

I E  (1 + 0 2 ) " r -  _ = _ =  
b T boO(1 - @)"/*-* 

of Hagen and Griessen [I41 will be used writh a variation of the heuristic parameter n.  

(4) 

Figure 5. Derivative -dg(6. r)/d(lnr){ro at four 
different fixed times ZQ against decay parameter b 
with l n i ~  = 3 (highest curve). 6, 9, 12 (lowest 
curve). 

Figure 6. Points: experimental values of the 
derivative Llr0 = -dM/d(lnt)l,o at a fixed time IQ 
against temperature T from Hagen and Criersen [141. 
C u m  corresponding dXog(b. r)/d(ln r)lro of the EDM 
assuming b a @ ( I  - 04)-', XQ a 1 - 0. In% = 9, 
T,=90K.  

00 50 
T (Kl 

100 
z l l  

3.2.2. The logarithmic rate -dX/d(lnt)li0 at fued  time to. For some expenmental 
decay curves X ( r )  measured at different temperatures T .  the values of the derivative 
LI,o = -dX/d(lnr)l,o at a fixed time to were plotted against T [ 14, IS]. 

In this context it is instructive to evaluate the corresponding EDM values L E O M ~ ~ ~  = 
-dg(b, r)/(d(ln r)l, at a fixed time 70 as a function of the parameter value b = T I E ,  First, 
disregarding the present temperature dependence of E .  the corresponding values evaluated 
with the EDM are displayed as a function of a linearly increasing b in figure 5 for different 
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fixed times so. Note that the function LEDMlrO(b) has a maximum, although for increasing 
b the decay g(r)  is monotonically faster (see figure 1 of [l]). Further, the maximum of 
LEDMlro(b) in figure 5 depends on the value of the fixed time so. 

In order to compare with data measured by Hagen and Griessen [I41 (shown in figure 6 
as points), the approximate temperature dependence I?/T a (1 - 04)/0, with 0 = T / T ,  
proposed in [16], has been used for the average activation energy in b = T / @ ,  i.e. 
equation ( 4 )  with n = 2. 

Furthermore, using a simplified function for X o  cx 1 - 0, the curve in figure 6 
approximates well the measured LI,o = -dM/d(lnr)l,o. No physically relevant parameter 
peaks within the framework of the EDM; rather the peak is an artefact of plotting the 
derivative with respect to l n t  of a non-logarithmic decay function at a fixed time to. 

3.2.3. Temperature dependence of normalized SI, = -dlnX/d(lnt)l ,o.  Malozemoff and 
Fisher [I71 compared various measurements in YBaCuO by plotting the values SI,, = 
-dInM(t)/d(lnt)l, at a fixed time lo as a function of temperature T .  Later, Griessen 
and co-workers [IS] collected additional experimental data which show that there is a large 
diversity of curves S ( T ) .  However, it is remarkable that for intermediate temperatures most 
of the data are within the range 0.01 < S < 0.04, that there is a clear tendency to decrease 
below IOK, and that for the majority there is a plateau or a reduced slope of S ( T ) ;  the data 
of their figure 1 are reproduced in our figure I .  The temperature dependence (4) of Hagen 
and Griessen [14] has been used to display SEDM(T)  for various values of n in figure 7 (full 
curves). 

T (K) 

Figure 7. Points (fmm Griessen and co-workers [18]): normdized re- 
laxation Tale S(T)llo = -dlnM(t)/d(lnt)jr0 for various YBa2Cu,O? 
samples. Curves: EDM using (4) forb = beO/[(l - Oz) ' - "~(1 + 
@2)ni2 with = 0.075. n = I ,  ,2. 3.65, 4, 5 and r" = 8. 

The function SEDM(T) of the EDM corresponding to S ( T )  is related to -dg/dr of (9) 
by 

Note that a power law x ( r )  cx r-*, which corresponds to an effective activation energy 
U&, cx ln(Y-'), would result in S ( T )  = b(T) .  Deviations are a consequence of the deviation 
of g(b, r )  from apower law, which is expressed by the incomplete gamma function y ( b ,  s). 
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3.2.4. The initial distribution by Hagen and Griessen. It seems worthwhile to compare 
the distribution function u(b, E") of equation (8) of [ l ]  (shown in figure 5 of [I]). with 
distribution functions m(E') of Hagen and Griessen [I41 (see their figure 3), evaluated 
from measurements made for 7 = rot >> 1 and interpreted with an extended Anderson-type 
creep theory. The authors incorporated both an effective pinning energy and adistribution of 
initial energies E*. Figure 8 displays their distribution function (full curve), their log-normal 
distribution (broken curve). Thus the interpretation by the EDM suggests an explanation 
of the distribution found by inversion [I41 as an aged elementary stochastic distribution, 
suggested also for the distributions evaluated by Theuss [I91 (see section 1.3 of [l]). 

E" 

m (E*) 
0.015 

(did 
0.010 

0.005 

0.0 -_  '.. 
$00 200 

oclivotion energy (me% 

F i y r e  8. Full curve: initial distribution function m(E') of activation energies E' of Hagcn 
and m-workers [I41 as obtained from inverting experimental decay data. Broken curve: fit with 
a log-normal distribution. Pointed curve: mmsponding distribulion function u(E' - Elcd)  of 
Ihe EDM, see equation (8) of [I], for b = 0.62. 

3.3. Resistivity of high-?; superconductors 
3.3.1. The connection ofdecay and resislivity. As discussed in section 3.1 of [ I ] ,  decay 
functions x ( f )  are connected to the resistivity p ( x )  by equation (11) of [l] 

(6) 
dx 
d r  

_-=  x?&) C( E(?)  = ? p ( j )  

with measurements of I-V current-voltage characteristics which yield the electric field 
E ( j )  and the resistivity p as a function of an externally driven normalized current density 
? = J / J c .  Therefore, resistivity measurements in high-T, superconductors can also be 
described by the EDM. 

3.3.2. In high-T, 
superconductors, direct measurements of I-V curves are limited to higher temperatures, 
where the EDM is not sufficient and additional effects have to be included. 

In order to describe heuristically the resistivity p ( T ,  H. J )  at low magnetic fields 
H. different behaviours will be attributed to separate fractions of the sample. These 
fractions are considered to be shunted in parallel, thus their conductivities U are added: 
U = UN +OM + UA. In the linear approximation the normal conductivity UN is A/(T + C). 
The EDM is approximated by the power law UM = A,.,(T)(J/J,)-'/b. 

An Arrhenius form UA = A ~ e x p ( ( l / T )  describes the exponential regime below Tc. 
In addition, the excess conductivity in the paraconductive regime above T, could be well 
described by the same Arrhenius form. 

A simple shunted model for the resistivity below and above T,. 



Model of non-exponential decay: I t .  Applications 2901 

3.3.3. Arrhenius form for rhe excess conductivify above T,. This heuristic Arrhenius form 
UA = A ~ e x p ( u / T )  has been checked with data of the excess conductivity U' = a -UN 

from Soret and co-workers [20] measured above Tc in a single crystal of YBCO. Indeed, an 
Arrhenius form with U w 1200 K would also include, in their figure 2, the points outside the 
straight line that represents the LawrenceDoniach (LD) form. Moreover, the resistance data 
of Friedmann and co-workers [21] measured in a single crystal of YBCO are 'very nearly 
linear' from 150-240K, fitted with p = U T  + b. Although they write 'the extreme linearity 
of p in this region (...) provides us with a basis for carefully studying the non-linear region 
below 150 K'. the Aslamazov-Larkin (AL) and LD models fit well their data but with rather 
different values for a and b. When the values for a and b found between 150-240K are 
used, only a small portion of the data agrees (see their figure 6). However, these data for 
a' fit well UA between 96-150K with U = (1100 i 50)K, whereas below 96K the data 
deviate, anticipating T, = 93 K. 

According to scaling near a second-order phase transition, the excess conductivity 
a' = a - UN should follow a power law U' cx C P ,  where E = (T - Tc)/Tc, for the 
paraconductive region above T,. 

When interpreting the Arrhenius behaviour U* cx exp(U/T) = C C P ( ~ )  by a power law 
cx E P ( ~ ) ,  an €-dependent exponent p ( 6 )  = (l / lnC'){U/[TC(l + E ) ]  + Inc) would result. 
Thus a continuously changing exponent P(E) for varying E could indicate an Arrhenius 
behaviour. 

Indeed, such a continuously changing slope is seen in the In ut-In E plot of figure 2 
of [22] outside -4 < In6 c -2, measured in a BiSr-Ca-Cu-0  pellett. 

3.3.4. The resistance of multilayeredsuperconductors. At this point it might be interesting to 
note that (7), without percolating superconductivity, could be used to describe the resistance 
of multilayers prepared and investigated by Fischer and co-workers [23] at different fields 
H below and above T,. 

These thin films consist of superconducting layers separated by non-superconducting 
Layers. The non-conducting layers seem to prevent a percolating supercurrent at low H ,  
resulting in a wide range of Arrhenius behaviour p cx exp(-U/T) below p / p ~  zz 0.1. 
However, the excess conductivity in the paraconductive region above T, also seems to 
follow an Arrhenius behaviour, with a value for U comparable to the value found at low T. 
Therefore, the full measured temperature range could be approximated with a single nearly 
temperature independent value for U ,  if the description as a sum U = uN +U'  of normal UN 

and excess conductivity d, which is well established to interpret the paraconductive region, 
is also applied below T,, with U' cx exp(V/T) which describes well p cx exp(-U/T) 
when U' >> uN. There might be a fortuitous correspondence of this Arrhenius behaviour 
with high-temperature excitations as evaluated for 2D Heisenberg models and observed in 
qUaSi-2D Heisenberg antiferromagnets [24]. 

3.3.5. Description ofrhe resisrivig of a granular YBCO sample. The simple shunted model 
for the resistivity will be applied to the resistance data in a YBCO sample measured by 
Wenk [25]. In order to simplify the fitting above T, the EDM prefactor AM(T) = U ~ ~ U N  

is chosen be proportional to UN. For b = T / E  the same temperature dependence 
b b@(l - @2)"/2-2(1 + is used as in section 3.2.1. Furthermore, the critical 
current J,(T) is approximated by J,(T) * J0(0)(1 - 04). Since the EDM term is related to 

t The data in figure 2 of [ZZ] fitted with an Arrhenius d a exp(-fU/T) would yield, for [he data 3t higher 7 .  a 
value of about 2000K for U. whereas the five data points at the lowest T would correspond to about 5000 K .  
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the temperature T,, where the superconductivity percolates through the sample, the reduced 
temperature 0 is defined by 0 = TIT, rather than TIT,. For measurements performed 
at the same experimental current density Jex. the ratio D = Jex/Jo is constant and the 
normalized current density j ( T )  = D / ( 1  - 04). However, for this form to result in 
j ( ~ )  > I ,  j is set to equal to one, as for T z T,. 

The following forms have been used to fit the temperature dependence of the resistance 
R of a granular YBazCu306.96 sample from the group of Kaldisi measured by Wenk [251. 
First the parameters A ,  C ,  U, F' = F A  are fitted for T > Tc. with F' for an arbitrary chosen 
fixed T, = W in the Arrhenius term 

The additional parameters T,, A M ,  bo, n. D are determined by fitting the full temperature 
range to the form 

with EM = y-''b when .f = D/(l - 04) < 1 for T < Tp; otherwise 
fit displayed in figure 9 has deviations (R,  -R,,,de,)/Rex(103 K) o f  the order of 
T, and below. 

= 1. The resulting 
above 

T (K) 
Figure 9. Points: resislance R(T) of a granular Figure 10. Points: logarithm of the excess 
YBap2u306.93 sample (from Kaldis) measured by conductivity In@ - rm) against 1/T - l / T p  of a 
Wenk W]. Curve: fit with (IO) yielding A = (1.49 I granular YBazCqO6,g3 sample (from Kaldis) measured 
0.08) x IO-', C = (-28 I 3) K. D = 4 x IO-'. by Wenk [XI; curve: fit with (9); lhe broken line 
bo = (3.9 f 0.1) X F' = 0.10 + 0.02, U = indicates the Arrhenius behaviour above T,. the m o w  
(1.9 f 0.6) x I O 4 &  Tp = (92.69 f 0.03) K, n = 0.11, marks Tp.  
for a chosen W = 91 K. 

The Arrhenius behaviour in the paraconductive region and the onset of the percolating 
supercurrent at Tp is shown by plotting In@ -UN) against 1/T - 1 / T p  in figure 10. The 
deviation from a straight line signals the onset of OM close to Tp = 92.69K. Note the 
excellent fit in the paraconductive region and the clear deviation starting at T,. Hence this 

t E Kaldis of Eidgendssische Technisehe Hachschule Ziirieh, produced granular YBCO samples with B well defined 
oxygen content. 
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- 
-2, 0, , I 

Figure 11. Log-log plot of the excess Conductivity 
U - ON against the normalized temperaNE deviation 
(T - Tc)/Tc with & = 92.44K of Schneider and 
Keller [261. Points measured by Wenk [251 in a 
granular YBa2Cu306.93 sample (from Kaldis). Full 
curve: fit with (9). Broken curve: exponent p = 0.67 
of e -UN CY (T - 1;Y of (261. 

(T-TJ 

Figure 12. Log-log plot of the resistance ratio RIRN 
against the temperature deviation T - Tg with T, of 
Gammel and co-workers [281. Points: measured by 
Gammei and co-workers [28] in a YBCO probe at H = 
6T. Curve: fit with (9) yielding F' = 0.012 f 0.002. 
& = 0.0213 f 0.0008, U = (llM10 i 600) K. To = 
(78.95 + 0.07) K. 

type of plot is an alternative method to determine the temperature Tp as a substitute for 
T,. In contrast lo& - U N )  is plotted in figure 11 only above T, against log(T/T, - 1) 
for Tc = 92.44K of Schneider and Keller [26]. The broken curve corresponds to their 
interpretation by a power law U' = U - UN o( (T  - Td-P with an exponent p = 0.67, the 
full curve is the Arrhenius excitation U' o( exp(U/T) where U = 1.9 x IO4 K. 

3.3.6. The resistiviiy at high$elds H :  transition to the glass state. The resistivity of high-T, 
superconductors at high fields H is a more complex function of temperature T ,  since below 
T, there is a gradual drop of the resistivity to a 'knee' observable at for p / p ~  E 0.2t0.3, 
depending upon material and sample quality. 

Below Tk, there is a region of thermal activation R a exp(-U/T) of Arrhenius 
type [27]. At lower temperatures, I-V curves are non-linear, resulting in a J-dependent 
resistivity. 

The resistance R derived from isothermal I-V curves of a YBaCuO sample measured in 
the pV region by Gammel and co-workers [28] have been presented as 'significant evidence 
for a finitetemperature phase transition in the vortex state'. Here, the same data will be 
alternatively interpreted by the EDM combined with an Anhenius excitation. Since Gammel 
and co-workers plotted the ratio RIRN, where RN is the linear extrapolation of the normal- 
state resistance, the following form for the normalized conductivity U / U N  = R N / R  is found 
using (8) with A H  >> 1. C = 0, W = Tp, and n = 0 in (4): 

-(I-@')'/boQ '=( ) 
UN (1 - 0 4 )  

where 0 = T/T,. Hence the crude form b = b@(l - is already sufficient. 
Furthermore, the ratio D = J,,/J,(T = 0) was set equal to Only the parameters 
bo, F', U ,  T ,  were fitted. Moreover, the Arrhenius term described by F', U was relevant 
only for the data at the highest temperatures. Note that no T, or T* is involved, only 
Tp = T,, representing in the model the temperature for the onset of percolating supercurrent 
at H = 6T. Figure 12 displays the EDM fit (line) and their data (points) in a log-log plot, 
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which yields a straight line for their interpretation by the power law R/RN a (T - T,)p, 
assuming zero resistance at T, and for their finite current density. 

The EDM accounts only qualitatively for the deviation from linearity of the I-V data 
(points) at decreasing temperature (see figure 13(a) (curve). 

In order to show the different extrapolations to lower temperatures, the data log(R/RN) 
of Gammel and co-workers I281 are plotted in figure 13(b) against T, together with the lines 
for the models, with R --t 0 at T, = 74.OK (broken curve) for the power law (7'- T6)y(z-1), 
and R/RN falling below an obviously non-measurable value around T = 72 K for 
the EDM (fun Curve). 

T (Kl 

T (K)  
Figure 13. Points: measurements of Gammel and co- 
workers 1281 in a YBCO probe at H = 6T. Full curves: 
using (9) and fitting values of figure 12. (a) Deviation 
from linearitydlnVfdIn1 against temperature T. (b) 
log(R/RN) against T with extrapolations of the 61s 
to lower temperature. The f i r  of Gammel and co- 
workers [28] R/RN U (T - Tg)y(z-') (broken c w e )  
exmpolates to zero resistance at T, = 74K, whereas 
h e  interpretation by the EDM (full curve) implies a drop 
to a finite but very low resistance. (c )  The extrapolated 
value l i b  = d J T  against T using b = b00(l - 0')' 
and the fitting values of figure 12. Note that the 
EDM also implies a transition f" 'fluid' to 'glassy' 
behaviour with a crnssover temperature Tn0 = 73.2K 
where s/T = I .  

I 
1 2 3 4 

loo40 1. 

Figure 14. 'Memory' effect without a second step when 
derivatives -dx/d@ntd) of non-exponential functions 
X ( I )  are plotted as a function of the logarirhm of a 
delayed time Id for I = td + r,. (a) Derivative 
-dx/d(lntd) of a logarithmic decay x ( r )  = 1 - Inr 
against l o g y  fort, = 109 with 9 = 2. 3, 4.5 (arrows). 
Note lhe inflection points at td = I,. (b) Derivative 
-dx/d(htd) of the power law X ( I )  = rb against logy 
for I, = 100. 1000, 10000 (wows) and b = 0.6, 1.3. 
1.5, respectively. Note the extrema at td = r,/b. 

Although both interpretations fit well the measured data, the extrapolations to lower 
temperatures seem to be very different, but only in the region where no direct measurements 
are possible. However, the main point is that the scaling theory (ST) 1291 and the EDM predict 
a sharp transition at T, onlyfor the limit ofvanishing current densiry J + 0 (see section 3.1.2 
of [ 11). For finite J > 0, both models also account for very small, but in principle finite, 
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(non-linear) resistivity below Ts. The discrepancy in figure 13(b) is due to the fact that 
the ST uses the prediction for J + 0, whereas the EDM is applied for a very small but 
finite current density 1. The fitting values for bo and Tp allow a crude extrapolation of 
Ilb = I?/T to lower temperatures, as shown in figure 13(c). The extrapolated temperature 
Tb=l M 13.2K, where I?/T = 1, is not far from Tg = 74 K. 

Since for Tb-1 the resistivity i s  p cx J in the EDM, ibis temperature corresponds to an 
I-V curve with V cx I z .  This temperature could be determined from the I-V curves of 
Koch and co-workers [30] at higher V values. These curves exhibit a continuous increase 
of the slope s of V a J s  in their log V-log J curves. As displayed for the magnetic field 
of 4 T  in their figure I(b), Tb=t is only slightly above their T8 since the broken line has, 
according to our interpretation, a slope s = a log V/a log I = 2.4 f 0.1, which deviates 
from their value 2.9 f 0.2 in the textt. 

In principle, T ~ = I  could also be determined by decay measurements providing that the 
fast decay in the ‘fluid’ regime is observable. Using a variation of field scanning speeds and 
the high sensitivity of microwave absorption, interpreted with an adequately transformed 
EDM to account for the steady states, the ratio 6=, /Tc M 0.97 at 0.5T was found by 
interpolating the b(T) values determined for a granular YBCO probe [3,31]. 

3.4. Approximating the ‘ageing’ or ‘memory’ effect 

3.4.1. Introductory remarks. The ‘ageing’ or ‘memory’ effect is considered to be a strong 
evidence for a spin glass [ 10,321. When a sample is, for example, field cooled at time rA, 
and when later at time CB the field is set to zero, the decaying non-equilibrium magnetization 
M might exhibit a special feature at time fc around tB + (tg - t A )  when plotted as a function 
of the logarithm of a ‘delayed’ time td starting at time t g .  Similar effects are seen after 
zero field cooling at t~ and a field step at $. Since the appearance of the feature seems to 
remember the length of the ‘waiting time’ tw = lg - IA, it is also called a ‘memory’ effect 
occurring around t,j tw. 

Theoretically, this effect is attributed to a distribution that changes already during the 
waiting time with, for example, parallel or hierarchical relaxation, as described by Fisher 
and Huse [lo] or Sibani and Hoffmann [33], respectively. Lundgren and co-workers [34] 
evaluated from measured decay curves the distributions of the relaxation times, which shift 
to larger relaxation times for increasing waiting times. 

Rossel and co-workers [ 151 described qualitatively the memory effect by superimposing 
two distributions, DA and Dg, of activation energies. The first, DA, starts to decay at the 
time tA of quenching the temperature; the second, DB, starts at time tB of a field step. 
Hence the first distribution is already ‘ageing’ during the waiting time tw, while the second 
distribution starts to decay at tB. The important point is that both distributions start with a 
large fraction exhibiting short relaxation times. The superimposed distribution might show 
a change of the macroscopic decay around the time t M tw, with the delayed time t = 0 
starting at fB, as observed in spin glasses [35] and in high-T, superconductors 1151, for 
example. 

Before these measurements are described by a superposition of decay functions of the 
EDM, an interesting feature inherent in non-exponential decay functions will be discussed. 

t This implies thal the scaling relation s = ( z  t 1)/2 for 30 would yield L = 3.8. instead of their z = 4.8 * 0.2. 
This discrepancy should be clarified, since they wrote ’for d = 3 we expect z > 4 as in the king spin glass’ 
. . .‘gives z = 4.8 i 0.2 i n  good agreement with our expectations for a vortex-glass lransition in 30’ . . . ’we find a 
value of L II 4.8, in excellent agreement with the estimate of z obtained indepndently from the I-V C U N ~  3f TB.’ 
Moreover. it is d h e r  surprising that this discrepancy behueen figure and text is repeated in the review dicle 1291. 
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3.4.2. A ‘memory’feature present without a second step. As described above, a ‘memory’ 
feature appears after a doublestep procedure remembering the time interval t ,  between 
these steps. It is an intriguing fact that a ‘memory’ feature is already present after a single 
step procedure at tA ,  if (i) the decay is strongly non-exponential, and (ii) the decay is plotted 
as the logarithm of a delqed time id starting at an arbitrary chosen time t B ,  thus after a 
fictive waiting time t,. 

In particular, a straightforward calculation reveals that a logarithmic decay x(t) a: 
1 - bInt with f = td + tw exhibits an inflection point at td = t ,  for arbitrary tw in its 
derivative -dr/d(ln td) a: d In& + t,)/d(ln t d )  with respect to the logarithm of the delayed 
time td  = r - tw (see arrows in  figure 14 (top)). 

Thus, an ‘ageing’ or ‘memory’ inflection point ‘appears’ in the derivative of decay data 
around td % t, without a second step at the time tB, if the decay form is close to 1 - b In t ,  
as discussed in the next section for a superconductor (see figure 15). 

I 
1 3 5 

log,o r 
Figure 15. Approximating the memory effect: derivative dG/d(ln r) against log r of G(b, r )  = 
(1 - a)g(b,  r t Tu) + ag(b. r), see (10). with a = 0.1, b = 0.05, rg = I ,  and waiting times 
logto r, = 2,3,4.5. The mows m k  I = r,. Imet: similar d3t3 evaluated by Sibmi and 
Hoffman” [33] with their hiemchical model from their figure 3. Note that both methods result 
in a jump around r = r,. 

Moreover, a decay x(t) in the form of apower law t-b will exhibit an extremum of the 
derivative -dx/d(ln td) = -d(td + Zw)-b)/d(hid) at td = t , /b when plotted as a function 
of the logarithm lntd of the delayed time (see arrows in figure 14 (bottom)) with b = 0.6, 
1.3 and 1.5 for f ,  = 100, 1000 and 10000, respectively. 

t, in the derivative for 
decay functions close to a power law t -b  when b % 1. similar to measurements in metallic 
spin glasses displayed as a function of the Iognrifhm of a delayed time in the next section 
(figure 16). 

3.4.3. Following the proposal of 
Rossel [15], the memory effect is approximated with the EDM by the superposition of 
g, (b , ,  T~+T,) and a g2(b2, rd) with the prefactor a characterizing the sign and the magnitude 
of the second step, yielding the non-normalized observable Gapeing(sd): 

Thus an ‘ageing’ or ‘memory’ extremum ‘appears’ close to td 

Approximating the ‘memory’ efect wirh the EDM. 

Gageii.p(bt,bz,U,rw; Td) = g t ( b i , T d + t w ) + U g z ( b z , T d ) .  (10) 
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I 
1 2 3 4 

log,, t 
Figure 16. ‘Ageing’ effect in the amorphous metallic spin glass (FexNil-,),5BlsPsA13 of 
Svedlindh and co-workers [36]. Points: zero field cooled susceptibility [ ( I / H ) M ( t ) ]  and 
mlresponding rrlaxotion rate IS(?) = (l/H)dM/dlnt] at different waiting times ( I ,  = 
102.103,i~,and10~s)plotledagainstlog,orwherer =fdstamatthefieldstepto H=O.IG.  
Curves: fifs wirh (11) of the EDM wilh lhe above 1,. and bl = 0.6, 1.3, 1.5, 2.7: bz = 0.02, 

c = 0.976. 0.977, 0.949, 0.932, X o  = 1.1,  1.0, 0.4. 0.3; respectively. inset: dislribution 
functions Xofo(E’)Iu=o of activation energies E‘ = E / T  evaluated with the above EDM 
parameters. 

0.02, 0.01, 0.01; r41.2 = 0.1, 0.7, 0,9> 1.4: h”.l = 4. 8. 3, 5s; tu,* = 1.5, 1.5, 0.8. 2.1s; 

Assuming first bl = bz = b and b << 1, resulting in a decay which is close to logarithmic 
% 1 - b l n r  for z,/b >> 1, it is instructive to write the derivative -(l/b)dG/drd with 
respect to the delayed time U :  

If la1 1, the slope is around a/rd and (a + 1)/?d for times 7d <( r, and rd >> r,, 
respectively, indicating logarithmic decays of G(rd for both regimes. A changeover 
between these regimes occurs around rd cs T,, thus ‘memorizing’ the initial waiting time 
t W .  

This effect is shown in figure 15 by displaying the derivative dG/d(ln U) for different 
waiting times rw, to be compared with the numerical result of the hierarchical model of 
Sibani and Hoffmann [33] (their figure 3 is displayed as the inset in figure 15). Note that 
in both cases rd = r, corresponds to the turning point, as evaluated in section 3.4.2 for a 
logarithmic decay after a single step. Thus this ‘memory’ effect is already present when g, 
is plotted as a function of Inrd.  

Probably the clearest experimental evidence of the ‘ageing’ effect has been found in 
dilute metal spin glasses, with the measurements of Svedlindh and co-workers [36] in 
the amorphous metallic system (FexNil-x)7SB16P6A13 as an example (see the points in 
figure 16). The curves represent a fit with a normalized superposition of the two-parameter 
EDM functions 

gageing(Td) = (1 - C ) g , ‘ 2 ’ ( h ,  Tin.1; rd + r w )  f C $ ’ ( h V  tin.2; Td) (12) 
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where q = r0,iti.  
Although the fit is not perfect for the derivative, the curves clearly show all the measured 

features. The evaluated initial times ti. are of the order of one second, thus of the order of 
the time for the cooling procedure. 

The EDM could be interpreted as an independently decaying distribution of activation 
energies E‘ = EJT. Such distributions for rd = 0 are plotted in the inset in figure 15, 
evaluated with the fitting parameters of the EDM. The main feature is a pronounced peak 
at an energy that increases due to the ‘ageing’ after the first step. very similar to the 
distributions of relaxation times displayed by Lundgren and co-workers [34] as evaluated 
from decay measurements in the metallic spin glass Cu4at.%Mn. The second step creates 
only a rather Bat additional distribution, which does not contribute to the ‘ageing’ feature. 

On the other hand, interpreting the EDM as being due to a single effective energy U&) 
increasing as a function of the decaying observable x. thus assuming a process which is 
homogeneous, would result in the same ‘ageing’ features. Therefore, the ‘ageing’ feature is, 
in our opinion, a consequence of specific non-exponential decay forms rather than a unique 
indication for a spin glass behaviour. 

4. Concluding summary 

The ‘elementary decay model’ (EDM) introduced in [ 11 has been applied here to various 
data measured in superconductors and in a metallic spin glass. 

The effective activation energy U.n in a high-T, superconductor obtained from 
measurements of van der Beek and co-workers [5] using a method proposed by Maley 
and co-workers [4] is well described by the EDM. These data and the EDM are both close 
to Udf a l n ( l / j ) ,  where .? = J J J ,  is the normalized current density. Thus the EDM 
agrees well with the microscopically exact solution Uea cx In(1JY) for the vortex motion 
controlled by intrinsic pinning in a layered system found by Blatter and co-workers [37] 
and used by Vinokur and co-workers 1381, whereas the power law U& a (j)-” widely 
used for collective creep [6,7,9] results in a continuously changing exponent p. 

Since decay and I-V curves have the same origin, a combination of such measurements 
in YBaZCusOx (YBCO) was used by Sandvold and Rossel [ 111 and interpreted with the 
collective creep theory. The same theory was used to fit decay measurements of Svedlindh 
and co-workers [12] in an extreme type-U superconductor. Both papers were analysed 
as to what extent other models can be excluded, especially the model of Blatter and co- 
workers [37] with Uea cx - ( l /b ) lnY implying x ( ~ )  cx rb, which is very close to the 

The decay in a heavy fermion superconductor, reported by Pollini and co-workers 1131, 
an example of a stretched exponential decay known as the Kohlrausch function exp[-(ror)P], 
could not be described by the closed form of the EDM. However, keeping the idea of the 
EDM of an initial distribution which decays independently, a distribution was found which 
is close to a Gaussian at an intermediate time. 

Since the temperature dependence of the decay is not part of the EDM, established 
forms for the temperature dependence of the pinning energy were used for testing the 
temperature dependence in high-T, superconductors. The logarithmic rate -dX/d(ln r)l,,  
and the normalized logarithmic rate -d In XJd(lnt)lra at a fixed time to of various measured 
data [14,18] were compared with the corresponding values evaluated with the EDM using a 
temperature-dependent mean activation energy E ( T )  f o r b  = TIE.  

Hagen and Griessen [14] evaluated a distribution of pinning energies from decay data 
measured at intermediate times using a superposition of logarithmic decay forms and 

EDM. 
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assuming an appropriate temperature dependence. Their distribution coincides with the 
distribution of the EDM at intermediate decay times. 

Since decay is connected to electric resistivity, the EDM is also applied to interpret I-V 
CUNS measured in high-T, superconductors. In order to interpret the fluctuations around 
and above T,, an additional term of Arrhenius type a exp(-E/T), corresponding to high- 
temperature excitations in a 20 Heisenberg model [24], was introduced, which fits well the 
whole regime above Tc in a YBCO granular sample [25] and the whole temperature range 
in multilayered YBCO films as reported in [23]. This term combined with the EDM fits well 
the resistivity of a granular YBCO sample and serves as a determination of a temperature Tp 
for the onset of percolating supercurrent. Moreover, the pV measurements of Gammel and 
co-workers [28] were analysed. Deviations from the scaling theory (ST) [29] only occur in 
the region of non-measurable small resistivity because Gammel and co-workers [28] fitted 
the data with the prediction of the ST for the limit of vanishing current density J + 0, 
whereas the EDM is applied for small but finite J .  for which the ST also does not predict a 
sharp transition. 

It is a very open question why the EDM using the elementary assumption of ‘the existence 
of energy bmiers of arbitrary heights’ which Nattermann [9] considered to be the ‘most 
important ingredient’ of his ‘scaling approach to pinning’, combined with an established 
temperature dependence for the mean pinning energy &T), is already sufficient to account 
certainly not for all, but for many, experimental data of high-T‘ superconductors, which 
confirm the scaling theory. 

The ‘ageing’ or ‘memory’ effect measured in spin glasses and superconductors was 
interpreted by the EDM, in particular the measurements of Svedlindh and co-workers [36]. A 
rather surprising result is that a ‘memory’ feature would also appear without the application 
of a second step after a waiting time, since this feature is a result of plotting a non- 
exponential decay as a function of the logarithm of a delayed time and is, therefore, not 
directly related to spin glass behaviour. 

Finally, this work shows again that investigations of only one macroscopic observable 
are not sufficient to discriminate between uniform and distributed features, an old problem of 
solid state physics. Additional investigations, such as a determination of the distribution of 
local magnetic fields as measured by myon spin rotation, performed by Harshman and 
co-workers [39], and a determination of the distribution of pinning energies using the 
temperature and frequency dependence of the noise, performed by Ferrari and co-workers 
[16], would be welcome. 
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