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Received 7 July 1993, in final form 19 January 1994

Abstract. The ‘elementary decay model’ (EDM), which allows an interpretation of most non-
exponential decay functions, is applied to representative published decay curves measured in
superconductors and in a metallic spin glass. Features attributed previously to different regimes
connected by crossover regions can be interpreted by monotonically changing parameters.

For high-T. superconductors f-V curves are afso analysed with the adeguately transformed
EDM. In addition, the excess conductivity in the paraconductive region above T is well modelled
by an Arrhenius excitation, which also extends below T, in moltilayers of YBCO. Measurements
previously interpreted by U oc J™¥ can also be interpreted by the EpM, which is close to
Usg & —1InJ evaluated by Blatter and co-workers, The rapid drop in resistivity close to a
transition into a vortex—glass state measured in the pV range by Gammel and co-workers in
YBCO could also be fitted by the EDM.

Further, the ‘ageing’ or 'memory” effect in a metallic spin glass is well interpreted by the
EDM. In particular, the “memory” effect is shown to be a consequence of plotting non-exponential
decay data against the logarithm of a retarded time and is therefore not a unique indication for
a spin glass.

1. Introduction

In the previous paper [1], an elementary decay model (EDM) was introduced that interpreted
quantitatively most non-exponential normalized decay forms x(t) = X(t}/ X, as observed
in, and proposed for, disordered structures such as spin glasses and granular superconductors.

The EDM can be considered as generated by an initial distribution fp(E") of occupied
activation energies E' = E/T with their occupation decaying independently in time ¢ by
thermal activation with a rate ro exp(—E'), and with 1/b = E' = E/T denoting the average
initial energy E normalized by the temperature T. The ratio E/T = 1/b(T) determines the
shape, with an exponential form for & — oo, a form close to a power law for intermediate
values of 5(T"), and a nearly logarithmic decay for &(T) <« 1. Intermediate values of 5(T)
also describe the ‘crossover’ regions guantitatively.

On the other hand, the EDM could be regarded as generated by an effective activation
energy U.s(x) which increages in time as a function of the decaying normalized observable
x.

The resulting functions of the EDM were compared in [1] with existing predictions of
microscopic models for decay in spin glasses and superconductors.

The first decay data in a high-T, superconductor published by Miiller and co-workers [2],
who were also the first to propose a spin-glass-type behaviour, have already been fitted [3].

'The present paper applies the EDM to selected experimental data in superconductors and
in a metallic spin glass.
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2. The ‘elementary decay model’ (EDM)

Since the ‘elementary decay model’ (EDM) has already been introduced [1}, only a brief
description will be given here.

The motivation was to search for an elementary common physical mechanism for the
non-exponential decay observed in a large number of disparate phenomena. Probably
the most elementary assumption is an initial Poissonian fo(E") = (1/E") exp(—E'/E")
distribution of activation energies E' = E/T, with normalized average energy E' = E/T
and with each fraction decaying independently according to an Arrhenius rate r(E) =
roexp(—£'). The resulting normalized form g{b, ) = X (¢)/ Xo of the EDM for the above
elementary initial condition could be evaluated in closed form

7
gb, ) =brtyb, vy =01 fo st le* ds )

with the normalized time 7 = rot and with the incomplete gamma function y (b, 7} as an
important correction to the term 7% describing a power law.,

In an alternative interpretation, this decay form g(b, t) could also be considered as
generated by a b-dependent form of an effective barrier energy U.m(g) increasing as a
function of the decaying normalized observable g.

A very simple method to vary the shape of a non-exponential function consists in shifting
the starting time from ¢ = 0 to a new starting time r* = O by a fictive initial delay ¢, where
t = t* + tjp, with the resulting function renormalized to one for t* = 0. This method
has been used to generalize the EDM to describe variations of the short time behaviour by
introducing a second parameter i, = rofin Yielding a normalized two-parameter decay:

bt =1%1%y)
@ (b, s 7% = g(d, in
I TR

(2)

A variation of the long time behaviour will be treated in section 3.1.4, where the extended
exponential exp[—(7/1)#] (the Kohlrausch function) is approximated.

3. Application of the EDM to experimental data

3.1. Fitting decay measurements in superconductors

3.1.1. Effective activation energy in high-T; superconductors. Maley and co-workers [4]
obtained the dependence of the effective activation energy Ugy as a function of the
magnetization from magnetic relaxation studies in YBCO. Data points obtained similarly
by van der Beek and co-workers [5] in a BizSroCaCusOg s single crystal are reproduced in
figure 1 together with the fit with the corresponding curve for Ue’f?(x) obtained from the EDM
with b = 0.07. Note that the log—log plot vields a curved function, The interpretation [6, 7]
by a power law Uy o (.f)“‘*", where J = J /.. is shown by broken curves for the exponents
it == 9/8 predicted [8] for the thermal activation of small flux bundles in a weakly pinned
3D vortex lattice, and w2 = 1/2 for the activation of larger bundles [9].

The experimental data indicate a rather continuous ‘crossover’ of the exponent p, similar
to the result found in a Monte Carlo simulation [10] of the Sherrington—Kirkpatrick model
(see figure 8 of the previous paper).
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Figure 1. Points {from [S]): dependence on current density of the extracted effective barrier
U{j) on alog-log plot. Curves: fits of U/5(/) of the EDM with b = 0.08,

3.1.2. Combining decay and I-V curves of a high-T, superconductor. Sandvold and
Rossel [11] combined J-V characteristics and magnetic relaxation in YBCO films measured
at 70K (T; = 88.5K). The analysis of the magnetic relaxation M{¢) in a ring revealed an
electric field E(J) as a function of the current density J, with E ten orders of magnitude
lower than for the I-V measurements. Both types of measurements were performed at
1 and 3kG. The four resulting sets of measurements are well described by the same form
In(E) = A— B/(DJ)€ as predicted by the collective pinning theory and in the vortex—glass
model which assume Uz o J~1/® in the expression for the electric field E o exp(—Ueg/T)
in the regime of collective creep occurting below the irteversibility line. The authors used
the same exponent C = 1/o for all four sets, yielding @ = 2.9 £ 0.4. However, the
fitting parameters A and B were different for the two magnetic field settings, and three
different values for I were used. Hence the four sets were fitted with the eight parameters
A1, Ay, By, B3, C, Dy_y1, Div3, Dy and thus with two adjustable parameters for each
set.

In the framework of the EDM each set of measurements can independently be fitted
with two adjustable parameters .A; and B;. Using the approximations E(J) = A;J%*!
for the I-V data and M () = A;2~% for the magnetic relaxation, the resulting values for
B, = E;/T = 1/b are around 28, 22 for the I-V data and 34, 29 for the M (¢) data for 1 kG
and 3 kG, respectively, thus decreasing for increasing magnetic and electric fields, with the
same ratio as the authors’ values Uy/kT = 70, 55 for the I-V data,

In contrast to Sandvold and Rossel, the interpretation by the EDM yields the above four
independent values for the average energies B, = E;/T, without a common exponent, as
in the glass mode] with the effective energy Ueg/T o J=C.

However, an arbitrary common exponent C could be constructed for B; = F(D;. 7).
This is possible by setting Z% = 1, which defines the common prefactor 7. Then the
remaining three scaling factors D; are determined. Such a caleulation could obviously be
performed for any set of four positive pairs (5;, J;) and chosen non-zero value for an
exponent C.

Therefore, the uniqueness of the interpretation by U o J~¢ with a common exponent C
might be reconsidered if the fits of different sets imply that the measured current densities
have to be scaled by different adjustable factors D,. The difference between the two
interpretations would then be reduced to the question: is the small negative curvature in the
log—log scale inside each data set relevant? In the /-V data the curvature occurs for the
data below E = 107> Vcem™' where the scatter of the data is increased, and for the M(z)
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data in the region close to the well pronounced systematic deviation of the magnetometer.

3.1.3. Decay in an extreme type-II superconductor. The decay functions observed by
Svedlindh and co-workers [12] in the extreme type-II superconductor PbMogSs show a
strong dependence on the applied magnetic field for small fields, but are nearly independent
for high fields. As an example, see figure 5(b) of {12]; the authors fitted at a high field the
decay of the thermoremanent magnetization M(¢) = Aflnt/%])™ yielding & = 1.25 £ 0.1
and logo(fo) = —9 1 at 13.5 K. Furthermore, the authors tried to fit a power law =%, but
they could not find a good description of the observed data,

These data measured at 13.5K are used for a comparison of different quantitative
descriptions. The resulting relative deviations are plotied in figure 2,

1.01p-.

.00 %=

.99

Figure 2. The decay of the themnoremanent magnetization M(z) in the extreme type-Il
superconducior PbMo;Sg observed at high fields at 13.5K by Svedlindh and co-warkers {12]
is fitted with the following functions. For selected measured data [12] the ratio Muycasuca/ Ma
{points) are displayed after fitting to {«.3). The other fits are represented by curves. (1) ()
Allntf5]™™. (@1} -r0e- fit with the values of [12] kept within their errors. (@.2) — - - — fit
with o, p and A as free parameters, yielding & = 1.55 & 0.03, log p{p) = ~11.7 £ 0.3, and
A = 1400 £200. (o.3) — — — fit as (@,2), but with ¢ replaced by ¢ + orr, thus with zar 25 an
additional free parameter, yielding o = 1.73 £ 0.03, logyg(fa) = —13.3£ 0.3, A = 3100 400,
and feprr = (—0.03 £ 0,05} s. (i) (B) power law Blro{t + teorm)1™F. (8.1) — - — fit with for
set to zero resulted in 2 large least-square deviation, see below, (8.2) --- - fit with feor as an
additional free parameter, yielding £ = 0.048 £ 0.001, rp = (3.4 £26)s”!, B =9+ 3, and
a comection of fepr = (—0.17 £ 0.03)s. (g) — Xog® (&, ro{t + tor)) Of the EDM, with &,
rg, Xg and tegry as free parameters, yielding & = 0.0482 £ 0.0002, ry = (7.7193 £ 0.0004) s~ 1,
Xo = 9.33 £ 0.02 and reor = (—0.2016 4 0.00003)s. This correction time could also be
considered as a fictive time delay #n of the two-parameter function g™ describing a different
initial condition. The least square deviations x2 of the above examples relative to x%(g) are
(@} 52,20, L.7; (8) 5.9, 1.1, and (g) 1.

Keeping in mind that fits are sensitive to the definition of the initial time ¢ = 0 to be
determined by the time when the field is switched off, the possibility of a small systematic
deviation #,o has been introduced by using ¢ 4 t,; replacing their 2.

The functions tested are () A[lnt/15]™®, (8) power law Blro(? + teor)] ™%, and (g)
Xog @b, ro(t + tearr)] of the EDM.

As demonstrated by the deviations in figure 2, a power law can only be excluded if the
actual time of the drop of the magnetic field is determined with high precision, i.e. when
a value of #or around 0.2 s is improbable. Furthermore, for a clear discrimination between
(o) and (g) the scatter of the data is too large.

Note that only the EDM allows a determination of the initial value Xj.

Moreover, their zero field cooled (ZFC) magnetizations Mzpc measured at low magnetic
fields are very peculiar. These data [12] exhibit an extremum in the derivative dM/d(ln#)
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with respect to the logarithm of the observation time ¢, see points in figure 3. The time when
the extremum occurs increases for decreasing field. The authors [12] relate this extremum
to a physical fact, namely “to the time when full flux penetration in the sample is achieved’.
Certainly, such an extremum might signal & special feature of the decay process. However,
suppose a decay function X(¢) starts at a finite initial value X, with a finite derivative
—dX/dt with respect to time ¢ and with —dX/dt decreasing to zero for ¢t — co. This
function will exhibit an extremum in their derivative —dX/d(In¢) at a time fe, governed
by the shape of X (), with Ty = 1 for X(r) o< exp(—7) as an example, without the need
for a change of the type of the decay at fax. This is demonstrated by fitting the observed
decay with the double-parameter function g® (b, Eg_,.,, 7) of equation (6) of [1] of the
EDM, see curves in figure 3. The resulting initial distributions Xg fo(E”) are displayed in the
inset in figure 3. Note that the second describing parameter Eﬁ—peuk is nearly independent
of the applied field.
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Figure 3. Derivative dM /d{In ) of the zero field cooled
magnetization M with respect to the logarithm of time #
in the extreme type-il superconductor PbMogSg at small
magnetic fields of 37, 39, 41 and 43 G, from Svedlindh
and co-workers [12]. Curves: fits of the derivative
Xodg@ (b, Ef_ e, T1/d(In 7) of the EDM with 7 = rot
and the corresponding fit values Xg = 5.2, 7.2, 64,5.3;
b = 0.05, 0.05, 0.06, 0.09; E(’,_pcak = 3.34, 3.50, 3.44,
3.36; rp = 0,002, 0.013, 0,034, 0.040 s~ !; respectively.
Inset; initial distribution functions Xofo(E’) against
reduced energy E' = E/T of the EDM.

Figure 4, Points: relaxation of the remanent magne-
tization measured in the heavy fermion superconductor
UPt3 by Poilini and co-workers [13] at 209 mK. Curve:
calculated decay using the heuristic form f“'(E', 1}
o (E' + 1)@~V exp(—bE"™) exp[~{rpt -+ c}exp({—E"]
yielding b = 0.0001, & = 4.8, rp = 0.0026, ¢ =
—5.5. Inset: distributions fW{&".r) for the times
£=0. [107, 107, 10, 10%, marked by arrows], 105, Ex-
cept for the very short times, the decay is also wel
fitted by the Kohlrausch function exp[—{¢/#)#] with
8 =055, 1 =347s.

3.1.4. Decay in a heavy fermion superconductor, Another important example concerns the
decay in the heavy fermion superconductor UPts as reported by Pollini and co-workers [13],
see points in figure 4. A swretched exponential exp[—(rot)?], the heuristic function of
Kohlrausch, is an excellent description of the measured data, although there is at present
no microscopic model that predicts the corresponding generating effective activation energy
U (xy « (1 — =1 In[—In x).

A description with a generating initial distribution according to (2)—(4) is not easy to
find. The point is that, for a Kohlrausch behaviour, a Gaussian rather than a Poissonian
distribution is adequate. Indeed, a heuristic modified Weibull initial distribution fOW(E’)

exp(—bE™)

exple exp(—E] )

fo (E") o (E' 4+ 1)leD
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turned out to describe well the observed behaviour (see the full curve in figure 4, evaluated
by numerical integration of equations (2) and (3) of [1]). The inset displays the distribution
FY(E, ) for increasing times. Note that this asymmetric distribution goes through a
symmetric distribution around 7 = 10°, which is close to a Gaussian distribution.

3.2. The temperature-dependent decay in high-T, superconductors

3.2.1. Adopting a temperature dependence for E of the EDM. Since the temperature
dependence of the mean energy £ of # = T/E is not part of this model and needs an
understanding of the detailed physics involved, the form

E_ (q+ehy”
T

bo®(1 — Oyr2-2 )

1
b

of Hagen and Griessen [14] will be used with a variation of the heuristic parameter #.

[aB-3 T Y T T T T T T T
Tprexp (3)
P
o2 o4
=(=
-
I
Figure 5. Derivative ~dg(b, 7)/d(Int}{;, at four
different fixed times zp against decay parameter &
%95 ' 0.5 .C with Inzy = 3 (highest curve), 6, 9, 12 (lowest
b curve),

Figure 6. Points: experimental values of the
derivative Ll,, = —dM/d(Int}|, at a fixed time 1o
against temperature T from Hagen and Griessen [14].
Curve: corresponding dxog(b 7)/4(In )] of the EDM
o0 assuming b o O(1 = 0%, Xpx 1 - O, Ingg =9,
T. = %0K.

3.2.2. The logarithmic rate —dX/d(nt)|y, at fixed time 15, For some experimental
decay curves X(z) measured at different temperatures T, the values of the derivative
Li, = —dX/d(In1)l,, at a fixed time #; were plotted against T [14,15].

In this context it is instructive to evaluate the corresponding EDM values Lgpmle, =
—dg(b, 7)/({d(In )|, at 2 fixed time 7o as a function of the parameter value b = T/E. First,
disregarding the present temperature dependence of £, the corresponding values evaluated
with the EDM are displayed as a function of a linearly increasing b in figure 5 for different
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fixed times 1p. Note that the function Lgpm|,, (b} has a maximum, although for increasing
b the decay g(r) is monotonically faster (see figure ! of [1]). Further, the maximum of
Lzpmlg () in figure 5 depends on the value of the fixed time 7.

In order to compare with data measured by Hagen and Griessen, [14] {(shown in figure 6
as points), the approximate temperature dependence E/T o1 —G%/0, with @ =T/T,
proposed in [16], has been used for the average activation energy E in b = T/E, ie.
equation (4) with r = 2,

Furthermore, using a simpiified function for Xy o« 1 — @, the curve in figure 6
approximates well the measured L[, = —dM/d(Int)|,. No physically relevant parameter
peaks within the framework of the EDM, rather the peak is an artefact of plotting the
derivative with respect to In¢ of a non-logarithmic decay function at a fixed time .

3.2.3. Temperature dependence of normalized S|, = —dinX/d(Int)|,. Malozemoff and
Fisher [17] compared various measurements in YBaCuO by plotting the values S}, =
—dIn M(r}/d(nt)|, at a fixed time # as a function of temperature T. Later, Griessen
and co-workers [18] collected additional experimental data which show that there is a large
diversity of curves S(T). However, it is remarkable that for intermediate temperatures most
of the data are within the range 0.01 < § < 0.04, that there is a clear tendency te decrease
below 10K, and that for the majority there is a plateau or a reduced slope of §(T'); the data
of their figure 1 are reproduced in our figure 7. The temperature dependence (4) of Hagen
and Griessen [14] has been used to display Sgpm(7T) for various values of » in figure 7 (full
curves).

Q.08
sl,,

0.04

002 4

Figure 7. Points (from Griessen and co-workers [18]): normalized re-
laxation rate $(T)ir, = —dln M(¢)/d(Ins)]y, for various YBazCu;0r
samples. Curves: EDM using (4) for b = by@/[(l — BHI (] 4
T (K) ©47/2 with by = 0.075, n = |, ,2,3.65, 4, 5 and z, = 8.

The function Sgpm(T) of the EDM corresponding to S¢T'} is related to —dg/dt of (9)

by
T dg =b(1_exp(—ro))_ )

(b, 7o) At

SepM|z, = — )

Note that a power law x(7) & 77, which corresponds to an effective activation energy
2 o In(J=1), would result in $(T') = b(T"). Deviations are a consequence of the deviation
of g(b, ) from a power law, which is expressed by the incomplete gamma function ¥ (b, 1).
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3.2.4. The initial distribution by Hagen and Griessen. It seems worthwhile to compare
the distribution function u{b, E”) of equation (8) of [1] (shown in figure 5 of [1]), with
distribution functions m(E*) of Hagen and Griessen [14] (see their figure 3), evaluated
from measurements made for T = rof 3> | and interpreted with an extended Anderson-type
creep theory. The authors incorporated both an effective pinning energy and a distribution of
initial energies E*. Figure 8 displays their distribution function (full curve), their log-normal
distribution {broken curve}. Thus the interpretation by the EDM suggests an explanation
of the distribution found by inversion [14] as an aged elementary stochastic distribution,
suggested also for the distributions evaluated by Theuss [19] (see section 1.3 of [1]}.

[

o (E®) ? ? ? 0.4

0.0151
A u
( meV }

0010

-c.2
Q.005}-

0 | ' [Py 0.0

Q 100 200

activation energy {meV)

Figure 8. Full curve:! initial distribution function m{E*) of activation energies £* of Hagen
and co-workers [14] as obtained from inverting experimental decay data. Broken curve; fit with
a log-normal distribution. Pointed curve: corresponding distribution function u{E’ ~ E;m) of
the EDM, sze equation (8) of [I], for & = 0.62,

3.3. Resistivity of high-T, superconductors

3.3.1. The connection of decay and resistivity. As discussed in section 3.1 of [1], decay
functions x(t) are connected to the resistivity o(x) by equation (11} of [1]

dx " o x
-5 = xFo(x) oc E(JYy = Jo(J) (6)

with measurements of /-V current—voltage characteristics which yield the electric field
I_f:‘(f ) and the resistivity p as a function of an externally driven normalized current density
J = J/J.. Therefore, resistivity measurements in high-T, superconductors can also be
described by the EDM.

33.2. A simple shunted model for the resistivity below and above T,. In high-T;
superconductors, direct measurements of /-V curves are limited to higher temperatures,
where the EDM is not sufficient and additional effects have to be included.

In order to describe heuristically the resistivity o(T, H, JJ) at low magnetic fields
H, different behaviours will be attributed to separate fractions of the sample. These
fractions are considered to be shunted in parallel, thus their conductivities ¢ are added:
¢ = op + oy + oa. In the linear approximation the normal conductivity oy is A/(T + C).
The EDM is approximated by the power law oy = An(T)(J/J)~1/2,

An Arrthenius form oy = Aaexp(U/T) describes the exponential regime below T..
In addition, the excess conductivity in the paraconductive regime above T, could be well
described by the same Arrhenius form.
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3.3.3. Arrhenius form for the excess conductivity above T,. This heuristic Arrhenius form
os = Apexp(U/T) has been checked with data of the excess conductivity ¢’ = ¢ — oy
from Soret and co-workers [20] measured above T; in a single crystal of YBCO. Indeed, an
Arrhenius form with U7 & 1200 K would also include, in their figure 2, the points outside the
straight line that represents the Lawrence—Doniach (LD) form. Moreover, the resistance data
of Friedmann and co-workers [21] measured in a single crystal of YBCOQ are ‘very nearly
linear’ from 150-240K, fitted with p = aT + b, Although they write ‘the extreme linearity
of p in this region (...) provides us with a basis for carefully studying the non-linear region
below 150 K’, the Aslamazov-Larkin (AL} and LD models fit well their data but with rather
different values for @ and . When the values for ¢ and b found between 150-240K are
used, only a small portion of the data agrees (see their figure 6). However, these data for
o' fit well o5 between 96-150K with U = (1100 £ 50) K, whereas below 96 K the data
deviate, anticipating T, = 93 K.

According to scaling near a second-order phase fransition, the excess conductivity
o' = ¢ — oy should follow a power law ¢’ « €77, where ¢ = (T — )/ T, for the
paraconductive region above Tg.

When interpreting the Arrhenius behaviour ga o exp{(U/T) = c€”? by a power law
o €9, an e-dependent exponent p(e) = (I/Ine " "WU/[T(1 + €)] + Ine} would resuit.
Thus a continuously changing exponent p{e) for varying ¢ could indicate an Arrhenius
behaviour.

Indeed, such a continuously changing slope is seen in the ing'—Ine plot of figure 2
of [22] outside —4 < Iné < —2, measured in a Bi-Sr-Ca-Cu-O pellett,

3.3.4. The resistance of multilayered superconductors. At this point it might be interesting to
note that {7}, without percolating superconductivity, could be used to describe the resistance
of multilayers prepared and investigated by Fischer and co-workers [23] at different fields
H below and above T..

These thin films consist of superconducting layers separated by non-superconducting
lavers. The non-conducting layers seem to prevent a percolating supercurrent at low H,
resulting in a wide range of Arrhenius behaviour p o« exp(=U/T) below p/on =~ 0.1
However, the excess conductivity in the paraconductive region above T also seems to
follow an Arrhenius behaviour, with a value for I comparable to the value found at low 7.
Therefore, the full measured temperature range could be approximated with a single nearly
temperature independent value for U, if the description as a sum ¢ = oy + ¢’ of normal oy
and excess conductivity ¢, which is well established to interpret the paraconductive region,
is also applied below T, with ¢’ o exp(U/T) which describes well ¢ o exp(—U/T)
when o’ % oyn. There might be a fortuitous correspondence of this Arrhenius behaviour
with high-temperature excitations as evaluated for 2D Heisenberg models and observed in
quasi-2D> Heisenberg antiferromagnets [24].

3.3.5. Description of the resistivity of a granular YBCO sample. The simple shunted model
for the resistivity will be applied to the resistance data in a YBCO sample measured by
Wenk {25). In order to simplify the fitting above T, the EDM prefactor Ap(T) = amon
is chosen be proportional to oy. For b = T/E the same temperature dependence
b & by®(1 — ©)W22(] + @22 is used as in section 3.2.1. Furthermore, the critical
current J.(T) is approximated by J.(T} & Jo(0)(1 — @*). Since the EDM term is related to

t The data in figure 2 of [22] fitted with an Archenius o’ o exp{—e{// T} would yield, for the data at higher T, a
value of about 2000 K for U, whereas the five data points at the lowest T would correspond to about S000 K.
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the temperature T,, where the superconductivity percolates through the sample, the reduced
temperature ©@ is defined by ® = T/T rather than T/T,. For measurements performed
at the same experimental current density Jo, the ratio D = Ju/Jp is constant and the
normalized current density J(T)y = D/(1 — @%). However, for this form to result in
j(T) > 1, J is set to equal to one, as for 7 > T,

The following forms have been used to fit the temperature dependence of the resistance
R of a granular YBa;CuyQg 05 sample from the group of Kaldisi measured by Wenk [25].
First the parameters 4, C, U, F' = FA are fitted for T > T, with F’ for an arbitrary chosen
fixed T, = W in the Asthenius term

1212 + F'ex vg_y
R AT+C AT~ w/

The additional parameters Ty, Am, bo, 1, D are determined by fitting the full temperature

range to the form
, v v
+ F EXP(? W)]

with By = J~12 when J = D/(1—©% < 1 for T < T,; otherwise By = 1. The resulting
fit displayed in figure 9 has deviations (Rex — Rmode1)/ Rex (103 K) of the order of 1072 above
Tp and 1072 below.

™

i_l[ 1+ ApBy
R™ALT+O)1+ AW

(8

T T o
5.0r k
< ¥ oo |
2 250 1
= s |
<9
—a}
of ’ T - A
88 g2 96
T (K}
Figure 9. Points: resistance R(T) of a granular  Figure 10. Points; logarithm of the excess

YBazCuaQg 93 sample (from Kaldis) measured by
Wenk [25]. Curve: fit with (10) yielding A = (1.49 £
0.08) x 1077, € = (~28 £ K, D = 4 x 1077,
bp = (3.9+£0.1) x 1073, F' = 0.10£0.02, U =
(1.94+0.6) x 10°K, T, = {92.69 £ 0.03) K, n = 0.11,
for a chosen W =91K.

conductivity In{¢ — o) agaiost /7 — 1/T, of a
granular YBazCuiOyg 01 sample {from Kaldis) measured
by Wenk [25); curve: fit with (9); the broken line
indicates the Asrhenius behaviour above Ty, the arrow
marks T,

The Asrhenius behaviour in the paraconductive region and the onset of the percolating
supercurrent at 7, is shown by plotting la(e — ow) against 1/7 ~ 1/7; in figure 10. The
deviation from a straight line signals the onset of oy close to T, = 92.69K. Note the
excellent fit in the paraconductive region and the clear deviation starting at 7,. Hence this

t E Kaldis of Eidgendssische Technische Hochschule Ziirich, produced granular YBCO samples with 2 well defined
axygen content,
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Figure 11. Log-log plot of the excess conductivity
g — oy against the normalized temperature deviation
(F — T}/ T with T, = 92.44K of Schoeider and
Keller [26}. Points: measured by Wenk [25] in a
granular YBa;Cu3Og g3 sample {from Kaldis). Full
curve: fit with (9). Broken curve: exponent p = 0.67
of ¢ — oy & (T — To)P of {26].

2903

O— T . T

@

U

4

g |

-6 L] 1 1
=02 0 0.2 0.4 086
log g (T-Tg}

Figure 12. Log-log plot of the resistance ratio R/ Ry
against the temperature deviation T — T, with T of
Gammel and co-wotkers [28]. Points: measured by
Gammel and co-workers [28] in a YBCO probe at H =
6T. Curve: fit with (9) yielding F' = 0.012 & 0.002.
by = 00213 £ 0.0008, ¥ = (1100 L 60K, T; =
(78.95 £ 00N K.

type of plot is an alternative method to determine the temperature 7, as a substitute for
T.. In contrast, log{c — o) is plotted in figure 1} only above T, against log(T/T, — 1)
for T, = 92.44K of Schneider and Keller [26]. The broken curve corresponds io their
interpretation by a power law ¢’ = ¢ — oy & (T" — T} 7 with an exponent p = 0.67, the
full curve is the Arrhenius excitation o’ o exp(U/T) where U = 1.9 x 10*K.

3.3.6. The resistivity at high flelds H: transition to the glass state. The resistivity of high-T,
superconductors at high fields H is a more complex function of temperature T, since below
T. there is a gradual drop of the resistivity to a ‘knee’ observable at Ty, for p/pny = 0.2+0.3,
depending upon material and sample quality.

Below Ty, there is a region of thermal activation R o« exp(—U/T) of Arrhenius
type [27]. At lower temperatures, -V curves are non-linear, resulting in a J-dependent
resistivity.

The resistance R derived from isothermal /-V curves of a YBaCuQ sample measured in
the pV region by Gammel and co-workers [28] have been presented as ‘significant evidence
for a finite-temperature phase transition in the vortex state’. Here, the same data will be
alternatively interpreted by the EDM combined with an Airhenius excitation. Since Gammel
and co-workers plotted the ratio R/ Ry, where Ry is the linear extrapolation of the normal-
state resistance, the following form for the normalized conductivity o /oy = Ry/R is found
using () with Ay > 1, C =0, W="Tp, and n = 0 in (4):

o _ D —([—@3)2/bg@ + TF’C u 1 1 ] 9
o \1-6% P (r Tp) )

where @ = T/T,. Hence the crude form b = bp®(1 — ®1)~? is already sufficient.
Furthermore, the ratio D = Juo/J.(T = 0) was set equal to 1079, Only the parameters
bo, F', U, T, were fitted. Moreover, the Arrhenius term described by F', U was relevant
only for the data at the highest temperatures. Note that no T; or T* is involved, only
T, ~ T, representing in the model the temperature for the onset of percolating supercurrent
at H = 6T. Figure 12 displays the EDM fit (line) and their data (points) in a log-log plot,
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which yields a straight line for their interpretation by the power law R/Ry o« (T — 1),
assuming zero resistance at T, and for their finite current density.

The EDM accounts only qualitatively for the deviation from linearity of the /-V data
(points) at decreasing temperature (see figure 13(a) (curve).

In order to show the different extrapolations to lower temperatures, the data log(R/Ry)
of Gammel and co-workers [28] are plotted in figure 13(b) against T, together with the lines
for the models, with R — 0 at T, = 74.0K (broken curve) for the power law (7 — T,}*¢~1,
and R/Ry falling below an obviously non-measurable value 1071 around T = 72K for

the EDM (full curve).

T2 74 76 78
T (K)

Figure 13. Points: measurements of Garmmel and co-
workers [28] in a YBCO probe at H = 6T. Full curves:
using (9) and fitting values of figure 12, (a) Deviation
from linearity dln V/dIn/ against temperature T, (5)
log(R/Ry) against T with extrapolations of the fits
to lower temperature. The fit of Gammel and co-
workers [28] R/Rn « (T — To)**~V (broken curve)
extrapolates to zero resistance at T, = 74 K, whereas
the interpretation by the EbM (full curve) implies a drop
to a finite but very low resistance. (¢} The extrapolated
value 1/6 = E/T against T using b = bo@(1 — @)
and the fitting values of figure 12. Note that the
EDM also implies a transition from ‘fluid’ to ‘glassy”
behaviour with a crossover temperature Ter, =~ 732K
whete E/T = L.

dx
dinty

1 2 3 4
loges by

Figure 14. “Memory’ effect without a second step when
derivatives —~dx /d(In#g) of non-exponential functions
x(t) arc plotted as a function of the logarithm of a
delayed time t4 for ¢t = 1ty + tw. (a) Derivative
—dx /d{Inta) of 2 logarithmic decay x(z) = 1 — Inr
against log#y for f = 107 with ¢ = 2, 3, 4, 5 (arrows).
Note the inflection points at 25 = t. (&) Derivative
—dx/d{Intg) of the power law x(r) = r~¥ againgt log 1y
for t,, = 100, 1000, 10000 {arrows) and b = 0.6, 1.3,
1.5, respectively. MNote the extrema at £y = 4, /b.

Although baoth interpretations fit well the measured data, the extrapolations to lower

temperatures seem to be very different, but only in the region where no direct measurements
are possible. However, the main point is that the scaling theory (5T) [29] and the EDM predict
a sharp transition at T, only for the limit of vanishing current density J — 0 (see section 3.1.2
of [1]}. For finite J > 0, both models also account for very small, but in principle finite,
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{non-linear) resistivity below T,. The discrepancy in figure 13(b) is due to the fact that
the ST uses the prediction for J — 0, whereas the EDM is applied for a very small but
finite current density J. The fitting values for by and 7, allow a crude extrapolation of
1/b = E/T to lower temperatures, as shown in figure 13(c). The extrapolated temperature
To=1 7~ 732K, where E/T =1, is not far from 7, = 74K.

Since for Ty., the resistivity is p o¢ J in the EDM, this temperature corresponds to an
I-V curve with V o I2. This temperature could be determined from the /-V curves of
Koch and co-workers [30] at higher V' values. These curves exhibit a continuous increase
of the slope s of V o J* in their log V-log J curves. As displayed for the magnetic field
of 47T in their figure 1(b), Tp—; is only slightly above their T since the broken line has,
according to our interpretation, a slope s = dlog V/dlog? = 2.4 1 0.1, which deviates
from their value 2.9 & 0.2 in the textj.

In principle, Tp=; could also be determined by decay measurements providing that the
fast decay in the ‘fuid’ regime is observable, Using a variation of field scanning speeds and
the high sensitivity of microwave absorption, interpreted with an adequately transformed
EDM to account for the steady states, the ratio Ty /7, = 0.97 at 0.5T was found by
interpolating the b(T) values determined for a granular YBCO probe [3, 31].

3.4. Approximating the ‘ageing’ or ‘memory’ effect

3.4.1. Introductory remarks. The *ageing’ or ‘memory’ effect is considered to be a strong
evidence for a spin glass [10,32]. When a sample is, for example, field cooled at time ¢4,
and when later at time #g the field is set to zero, the decaying non-equilibrium magnetization
M might exhibit a special feature at time fc around g + (fg — 14} when plotted as a function
of the logarithm of a ‘delayed” time #4 starting at time zp. Similar effects are seen after
zero field cooling at 74 and a field step at #p. Since the appearance of the feature seems to
remember the length of the ‘waiting time’ t,, = tp — 14, it is also called a ‘memory” effect
occurring around 7y A ty.

Theoretically, this effect is attributed to a distribution that changes already during the
waiting time with, for example, parallel or hierarchical relaxation, as described by Fisher
and Huse [10] or Siban: and Hoffmann [33], respectively. Lundgren and co-workers [34]
evaluated from measured decay curves the distributions of the relaxation times, which shift
to larger relaxation times for increasing waiting times.

Rossel and co-workers [15] described qualitatively the memory effect by superimposing
two distributions, Da and Dg, of activation energies. The first, Da, starts to decay at the
time ¢s of quenching the temperature; the second, Dg, starts at time #5 of a field step.
Hence the first distribution is already ‘ageing’ during the waiting time #,,, while the second
distribution starts to decay at fg. The important point is that both distributions start with a
large fraction exhibiting short relaxation times. The superimposed distribution might show
a change of the macroscopic decay around the time ¢ & ¢, with the delayed time t = 0
starting at fp, as observed in spin glasses [35] and in high-T, superconductors [15], for
example.

Before these measurements are described by a superposition of decay functions of the
EDM, an interesting feature inherent in non-exponential decay functions will be discussed.

t This implies that the scaling relation s = {z + 1)/2 for 30 would yield z = 3.8, instead of their z = 4.3 £ 0.2,
This discrepancy should be clarified, since they wrote ‘for d = 3 we expect z > 4 as in the Ising spin glass®
.- -‘gives z = 4.8 0.2 in good agreement with our expectations for a vortex—glass transition in ap* - -+ ‘we find a
value of z = 4.8, in excellent agreement with the estimate of z obtained independently from the /-V curve at T’
Moreaver, it is rather surprising that this discrepancy between figure and text is repeated in the review article [29].
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3.4.2. A ‘memory’ feature present without a second step. As described above, a ‘memory’
feature appears after a double-step procedure remembering the time interval ¢, between
these steps. It is an intriguing fact that a ‘memory’ feature is already present after a single-
step procedure at 4, if (i} the decay is strongly non-exponential, and (ii) the decay is plotted
as the logarithm of a delayed time 14 starting at an arbitrary chosen time tg, thus after a
fictive waiting time #,.

In particular, a straightforward calculation reveals that a logarithmic decay x(t)
1~ blInt with ¢ = t4 -+ ¢, exhibits an inflection point at 1y = 1, for arbitrary ¢, in its
derivative —dx /d{In#y) o dIn(ts + tw)/d(In 24) with respect to the logarithm of the delayed
time ty =t — 1, (see arrows in figure 14 (top)).

Thus, an ‘ageing’ or ‘memory’ inflection point ‘appears’ in the derivative of decay data
around 3 = t,, without a second step at the time zg, if the decay form is close to 1 — bint,
as discussed in the next section for a superconductor (see figure 15).

dG
In

d

1 3 5
gy T

Figure 15. Approximating the memory effect: derivative dG/d(In r) against logt of G(b, v) =
(1 —a)gld, t + ) +aglh, ), see (10), with a = 0.7, b = 0.05, ry = [, and waiting times
logy tw = 2,3,4,5. The arrows mark t = 1. Inset: similar data evaluated by Sibani and
Hoffmann [33] with their hierarchical model from their figure 3, Note that both methods result
in a jump around T = Tw.

Moreover, a decay x(¢) in the form of a power law =% will exhibit an extremum of the
derivative —dx /d(In g} = —d{tg + t,)~?)/d(lnty) at t3 = t,/b when plotted as a function
of the logarithm In# of the delayed time t4 (see arrows in figure 14 (bottom)} with & = (.6,
1.3 and 1.5 for £, = 100, 1000 and }0000, respectively,

Thus an ‘ageing’ or ‘memory’ extremum ‘appears’ close to 2y * t,, in the derivative for
decay functions close to a power law t~% when b = 1, similar {0 measurements in metallic
spin glasses displayed as a function of the logarithm of a delayed time in the next section
(figure 16).

3.4.3. Approximating the ‘memory’ effect with the £0M. Following the proposal of
Rossel [15], the memory effect is approximated with the EDM by the superposition of
21(by, Ta+1w) and @ g2(bs, 74) with the prefactor a characterizing the sign and the magnitude
of the second step, yielding the non-normalized observable Gageing(t3):

Gageing (b1, b2, @, T’ Ta) = g1(by, Ta + Tw) + a g2(b2, T). (10)
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Figure 16. ‘*Ageing” effect in the amorphous metallic spin glass (Fe,Nij_;)7sBsPsAl; of
Svedlindh and co-workers [36]. Points: zero field cooled susceptibility [(1/H)M(#)] and
corresponding relaxation rate [S(t) = (1/H)dM/dint] at different waiting times (5, =
10%, 10°, 10*, and 10° s) plotted against log, ¢ where 1 = £y starts at the field step to Ff = 0.1 G,
Curves: fits with (11) of the EDM with the above 1y, and b; = 0.6, 1.3, 1.5, 2.7, & = 0.02,
0.02, 8.01, 0.01; 7o, 2 = 0.7, 07, 09, 1.4; fn1 = 4. 8, 3, 58 fn2 = 1.5, 1.5, 03, 2.15;
c = 0.976, 0977, 0.949, 0.932; Xy = 1.1, 1.0, 0.4, 0.3; respectively. Inset: distribution
functions Xo fo(E")|,=p of activation energies £’ = E/T evalvated with the above EDM
parameters.

Assuming first by = b, = b and b < 1, resulting in a decay which is close to logarithmic
/R 1 —bint for /b > 1, it is instructive to write the derivative —(1/6)dG/dtyg with
respect to the delayed time t,:
1d4G 1 a
- - — an

bdzy T4+ Tw Td

If Ja| = 1, the slope is around z/7y and (g + 1)/14 for times 7y € 1T, and Ty > T,
respectively, indicating logarithmic decays of G(rg) for both regimes. A changeover
between these regimes occurs around 74 & Ty, thus ‘memorizing’ the initial waiting time
fue

This effect is shown in figure 15 by displaying the derivative dG/d(In ty) for different
waiting times t,, 10 be compared with the numerical result of the hierarchical model of
Sibani and Hoffmann [33] (their figure 3 is displayed as the inset in figure 15). Note that
in both cases Ty = 1, corresponds to the turning point, as evaluated in section 3.4.2 for a
logarithmic decay after a single step. Thus this “memory” effect is already present when gy
is plotted as a function of Inzy.

Probably the clearest experimental evidence of the ‘ageing’ effect has been found in
dilute metal spin glasses, with the measurements of Svedlindh and co-workers [36] in
the amorphous metallic system {(Fe,Nij_i)75B16PsAls as an example (see the points in
figure 16). The curves represent a fit with a normalized superposition of the two-parameter
EDM functions

Zageing (Ta) = (1 — )& (81, Tin1; Ta + ) + c8i7 (b2, Tin2; Ta) (12)
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where 1; = ro,;f.

Although the fit is not perfect for the derivative, the curves clearly show all the measured
features. The evaluated initial times #, are of the order of one second, thus of the order of
the time for the cooling procedure.

The EDM could be interpreted as an independently decaying distribution of activation
energies E' = E/T. Such distributions for ry = 0 are plotted in the inset in figure 15,
evaluated with the fitting parameters of the EDM, The main feature is a pronounced peak
at an energy that increases due to the ‘ageing’ after the first step, very similar to the
distributions of relaxation times displayed by Lundgren and co-workers [34] as evaluated
from decay measurements in the metailic spin glass Cu—4at.%Mn. The second step creates
only a rather flat additional distribution, which does not contribute to the *ageing’ feature.

On the other hand, interpreting the EDM as being due io a single effective energy Uggr(x)
increasing as a function of the decaying observable x, thus assuming a process which is
homogeneous, would result in the same *ageing” features. Therefore, the ‘ageing’ feature is,
in our opinion, a consequence of specific non-exponential decay forms rather than a unique
indication for a spin glass behaviour.

4, Concluding summary

The ‘elementary decay model’ (EDM) introduced in [1] has been applied here to various
data measured in superconductors and in a metallic spin glass.

The effective activation energy Uesr in a high-T. superconductor obtained from
measurements of van der Beek and co-workers [5] using a method proposed by Maley
and co-workers [4] is well described by the EDM. These data and the EDM are both close
to Uesr ¢ ln(l/f), where J = J/Js is the normalized current density. Thus the EDM
agrees well with the microscopically exact solution Uy o In(1/J) for the vortex motion
controlled by intrinsic pinning in a layered system found by Blatter and co-workers [37]
and used by Vinokur and co-workers [38], whereas the power law Uz o (Jy~# widely
used for collective creep [6,7,9] results in a continuously changing exponent p.

Since decay and J-V curves have the same origin, a combination of such measurements
in YBazCu3Q, (YBCO) was used by Sandvold and Rossel [11] and interpreted with the
collective creep theory. The same theory was used to fit decay measurements of Svedlindh
and co-workers [12] in an extreme type-II superconductor. Both papers were analysed
as to what extent other models can be excluded, especially the model of Blatter and co-
workers [37] with U oc —(1/8) InJ implying x(#) o ¢, which is very close to the
EDM.

The decay in a heavy fermion superconductor, reported by Pollini and co-workers [13],
an example of a stretched exponential decay known as the Kohlrausch function exp[—(rof)],
couid not be described by the closed form of the EDM. However, keeping the idea of the
EDM of an initial distribution which decays independently, a distribution was found which
is close to a Gaussian at an intermediate time,

Since the temperature dependence of the decay is not part of the EDM, established
forms for the temperature dependence of the pinning energy were used for testing the
temperature dependence in high-T; superconductors. The logarithmic rate —dX/d(Inz)|,
and the normalized logarithmic rate —d In X /d(In )|, at a fixed time & of various measured
data {14, 18] were compared with the corresponding values evaluated with the EDM using a
temperature-dependent mean activation energy E(T) for b = T/E-.

Hagen and Griessen [14] evaluated a distobution of pinning energies from decay data
measured at intermediate times using a superposition of logarithmic decay forms and
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assuming an appropriate temperature dependence. Their distribution coincides with the
distribution of the EDM at intermediate decay times.

Since decay is connected to electric resistivity, the EDM is also applied to interpret I-V
curves measured in high-T; superconductors. In order to interpret the fluctuations around
and above T, an additional term of Arrhenius type o« exp(—E/T), corresponding to high-
temperature excitations in a 2D Heisenberg model {241, was introduced, which fits well the
whole regime above T; in a YBCO granular sample [25] and the whole temperature range
in multilayered YBCO films as reported in [23]. This term combined with the EDM fits well
the resistivity of a granular YBCO sample and serves as a determination of a temperature 7,
for the onset of percolating supercurrent. Moreover, the pV measurements of Gammel and
co-workers [28] were analysed. Deviations from the scaling theory (ST) [29] only occur in
the region of non-measurable small resistivity because Gammel and co-workers [28] fitted
the data with the prediction of the ST for the limit of vanishing current density J — 0,
whereas the EDM is applied for small but finite J, for which the sT also does not predict a
sharp transition.

It is a very open question why the EDM using the elementary assumption of ‘the existence
of energy barriers of arbitrary heights® which Nattermann [9] considered to be the ‘most
important ingredient’ of his ‘scaling approach to pinning’, combined with an established
temperature dependence for the mean pinning energy E(T), is already sufficient to account
certainly not for all, but for many, experimental data of high-T; superconductors, which
confirm the scaling theory.

The ‘ageing’ or ‘memory” effect measured in spin glasses and superconductors was
interpreted by the EDM, in particular the measurements of Svedlindh and co-workers [36]. A
rather surprising result is that a ‘memory” feature would also appear without the application
of a second step after a waiting time, since this feature is a result of plotting a non-
exponential decay as a function of the logarithm of a delayed time and is, therefore, not
directly related to spin glass behaviour,

Finally, this work shows again that investigations of cnly one macroscopic observable
are not sufficient to discriminate between uniform and distributed features, an old problem of
solid state physics. Additional investigations, such as a determination of the distribution of
local magnetic fields as measured by myon spin rotation, performed by Harshman and
co-workers [39], and a determination of the distribution of pinning energies using the
temperature and frequency dependence of the noise, performed by Ferrari and co-workers
[16], would be welcome.
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